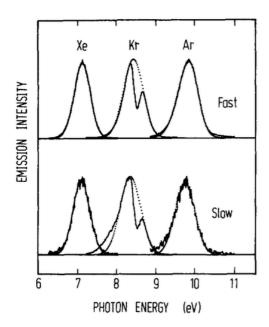
Photon Detection R&D for v LArTPCs

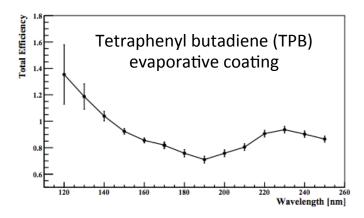
M. Toups MIT


Workshop on the Intermediate Neutrino Program Feb. 5, 2015

Outline

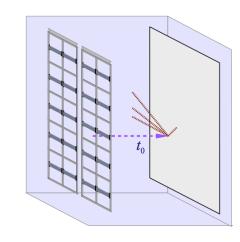
- LAr scintillation light
- LAr light detection motivation
 - Key R&D goals
- R&D related to LAr scintillation

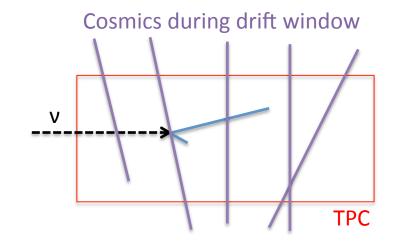
SiPM R&D opportunities


- LAr is a bright scintillator: O(10,000) γ/MeV
- LAr scintillates in the VUV at 128 nm
- LAr is very transparent to its own light
 - Rayleigh scattering length: λ≈90 cm
- LAr light divided between two components
 - Fast component: τ≈6 ns
 - Slow component with τ≈1.5 us
- LAr scintillation light and charge anticorrelation

E Morikawa et al.., J Chem Phys vol 91 (1989) 1469

- LAr is a bright scintillator: O(10,000) γ/MeV
- LAr scintillates in the VUV at 128 nm
- LAr is very transparent to its own light
 - Rayleigh scattering length: λ≈90 cm
- LAr light divided between two components
 - Fast component: τ≈6 ns
 - Slow component with τ≈1.5 us
- LAr scintillation light and charge anticorrelation


Standard SiPMs/PMTs not sensitive at this wavelength, so use wavelength shifters


V. Gehman et al, NIM A 654, 116 (2011)

- Provides interaction time (t₀) to reconstruct drift coordinate and correct track energy
- Trigger detector readout (especially for non-beam events)
- Cosmic background rejection

Event reconstruction/particle ID

D. Whittington, IU

ELBNF Requirements

Key R&D Goal

Provides interaction time (t₀) to reconstruct drift coordinate and correct track energy

Increase photo-detection coverage/efficiency

 Trigger detector readout (especially for non-beam events)

Cosmic background rejection

Event reconstruction/particle ID

ELBNF Requirements

Key R&D Goal

- Provides interaction time (t₀) to reconstruct drift coordinate and correct track energy
- Trigger detector readout (especially for non-beam events)
- Cosmic background rejection

Main SBN Requirement

Event reconstruction/particle ID

Increase photo-detection coverage/efficiency

Improve photo-detection position/timing resolution

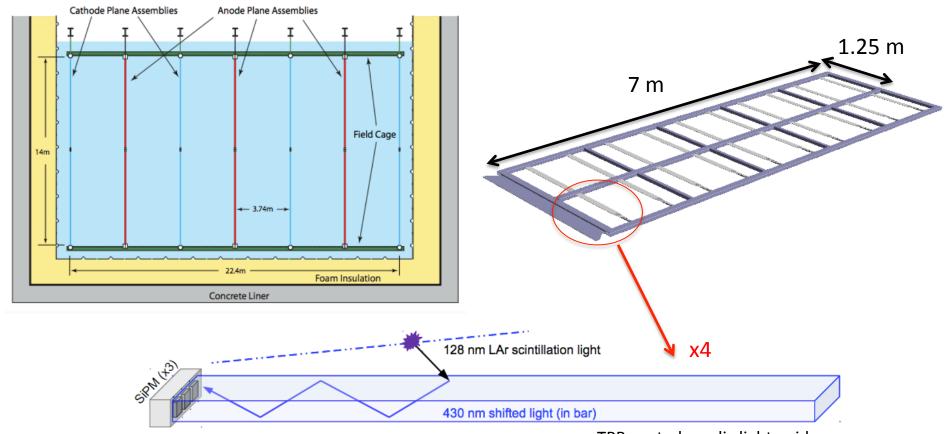
ELBNF Requirements

Key R&D Goal

- Provides interaction time (t₀) to reconstruct drift coordinate and correct track energy
- Trigger detector readout (especially for non-beam events)
- Cosmic background rejection

Main SBN Requirement

Event reconstruction/particle ID


DM Experimental Techniques

Increase photo-detection coverage/efficiency

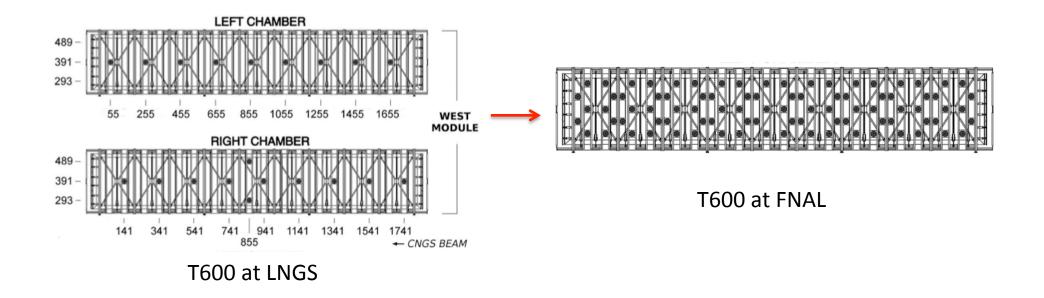
Improve photo-detection position/timing resolution

Demonstrate techniques in a v LArTPC

To maximize TPC active regions, ELBNF requires thin profile photodetectors that sit inside wrapped APAs

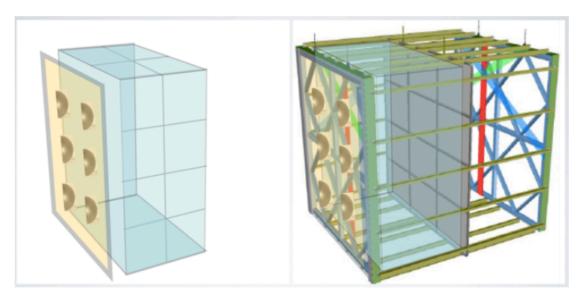
R&D Needed To:

- Improve WLS conversion efficiency at surface
- Decrease propagation loses (e.g. arXiv:1410.6256)
- Improve bar response uniformity



CSU

LSU

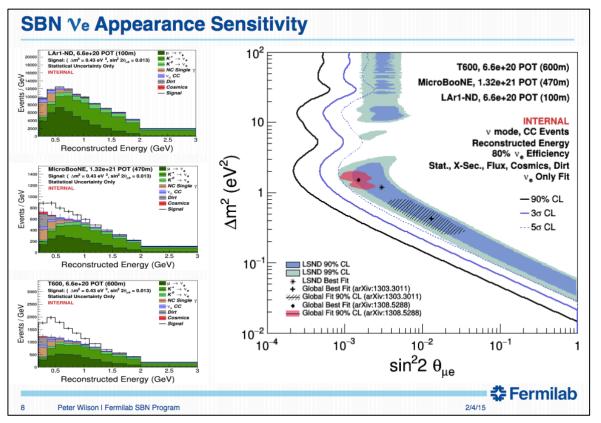

IU

SBN experiments are not constrained by wrapped APAs (PMTs can be used) and can increase photodetector coverage directly (due to their smaller size)

LAr1ND is considering a similar strategy with light guide bars or PMTs

An alternative idea inspired by DM experiments is to line the TPC field cage with TPB-coated reflector foils

Conceptual design for LAr1ND

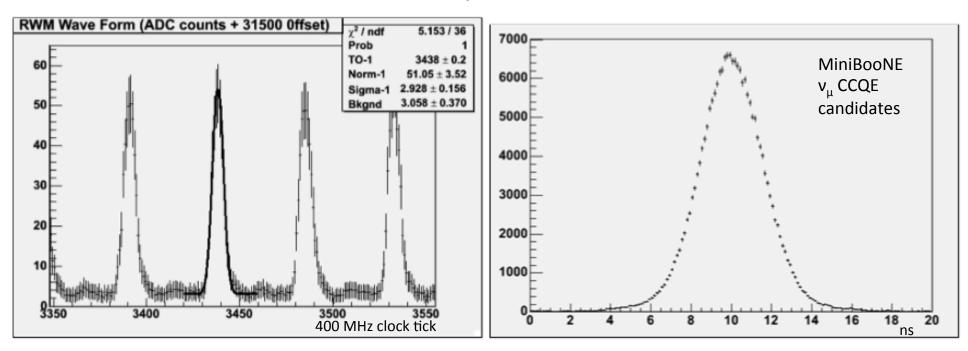

Reflections smooth out positional dependence of detected photons

Combining this with enhanced photo-detector coverage can dramatically increase the amount of light collected

Improve photo-detection position/timing resolution

SBN sensitivities require additional 95% cosmic rejection by

- Scintillation light/TPC track matching
- Resolving the RF structure of the Booster beam
- An external muon tracker

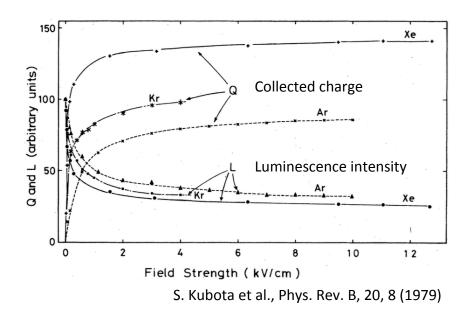

WINP 2015

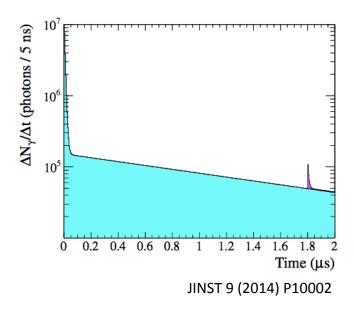
Improve photo-detection position/timing resolution

Using first photons, ultimate limit on timing resolution should be < 6ns

MiniBooNE can now resolve the RF structure of the Booster beam:

- Enhanced cosmic background rejection
- Can look for beam-related activity between RF buckets



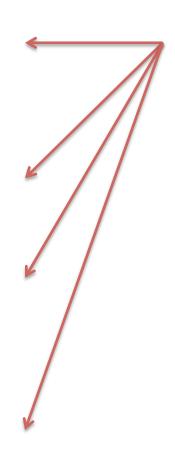

→ Key capability of SBN program should be exploited

Event reconstruction/particle ID

Improve calorimetric energy reconstruction of few-GeV CC v_e :

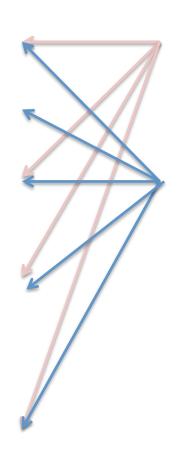
- Combining charge and light signals
- Correcting for missing secondary neutrino energy (Michel tagging)

Statistically separate v_{μ} events in a \overline{v}_{μ} beam (Michel tagging)


→ Both require detecting 10⁻³ of photons produced

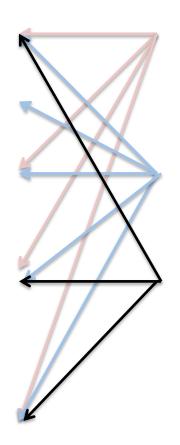
More R&D is needed

- How far down can we push the thresholds for t₀ reconstruction and triggering in ELBNF?
- How does position/timing resolution depend on photodetector granularity?
 - How well can light flashes be matched to TPC events?
 - How far down can we push the timing resolution?
 - Do reflector foils destroy position/timing resolution?
- How does light improve calorimetric energy resolution?
- Can "wrong-sign" v_{μ} be efficiently separated from a \overline{v}_{μ} beam?


- LAr is a bright scintillator: O(10,000) γ/MeV
- LAr scintillates in the VUV at 128 nm
- LAr is very transparent to its own light
 - Rayleigh scattering length: λ≈90 cm
- LAr light divided between two components
 - Fast component: τ≈6 ns
 - Slow component with τ≈1.5 us
- LAr scintillation light and charge anticorrelation

- LAr is a bright scintillator: O(10,000) γ/MeV
- LAr scintillates in the VUV at 128 nm
- LAr is very transparent to its own light
 - Rayleigh scattering length: λ≈90 cm
- LAr light divided between two components
 - Fast component: τ≈6 ns
 - Slow component with τ≈1.5 us
- LAr scintillation light and charge anticorrelation

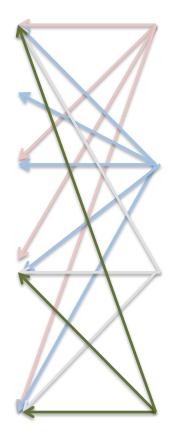
Puritydependent


- LAr is a bright scintillator: O(10,000) γ/MeV
- LAr scintillates in the VUV at 128 nm
- LAr is very transparent to its own light
 - Rayleigh scattering length: λ≈90 cm
- LAr light divided between two components
 - Fast component: τ≈6 ns
 - Slow component with τ≈1.5 us
- LAr scintillation light and charge anticorrelation

Puritydependent

Dopantdependent

- LAr is a bright scintillator: O(10,000) γ/MeV
- LAr scintillates in the VUV at 128 nm
- LAr is very transparent to its own light
 - Rayleigh scattering length: λ≈90 cm
- LAr light divided between two components
 - Fast component: τ≈6 ns
 - Slow component with τ≈1.5 us
- LAr scintillation light and charge anticorrelation



Puritydependent

Dopantdependent

E-field dependent

- LAr is a bright scintillator: O(10,000) γ/MeV
- LAr scintillates in the VUV at 128 nm
- LAr is very transparent to its own light
 - Rayleigh scattering length: λ≈90 cm
- LAr light divided between two components
 - Fast component: τ≈6 ns
 - Slow component with τ≈1.5 us
- LAr scintillation light and charge anticorrelation

Puritydependent

Dopantdependent

E-field dependent

Particle dependent

R&D Related to LAr Scintillation Light

- Purity
 - Nitrogen removal

- Dopants
 - TMG, Xenon, etc.

- Particle-ID
 - Ratio of fast/slow light

R&D Related to LAr Scintillation Light

Purity

Nitrogen removal

Can we recover purity if N₂ is introduced?

Dopants

TMG, Xenon, etc.

Should we shift late light to earlier times, longer wavelengths?

Should we convert some light back into charge?

Particle-ID

Ratio of fast/slow light

Do DM particle-ID techniques work in neutrino beam events?

SiPM R&D Opportunities

- Are SiPMs robust against cryo-cycling?
- Should SiPMs be ganged together? How?
- What is the best signal cable to use?
- Can we make high density SiPM signal feedthroughs?
- Can we make SiPMs directly sensitive to 128 nm light?
 - These already exist for LXe

Conclusion

- LAr scintillation light provides key capabilities for future v LArTPCs
- Exciting possibilities exist to extract even more physics information from the light
- More work needs to be done to translate physics requirements into detector requirements
- Further detector and cryo R&D are needed to develop robust and efficient v LArTPC photo-detection systems

End.